Integration Workshop 2003
Project on Constructing the p-adic Numbers

Douglas Ulmer

For each prime number p there is a field of p-adic numbers, denoted \mathbb{Q}_p, which is complete with respect to a certain absolute value. Essentially any question that makes sense for the real numbers also makes sense for \mathbb{Q}_p and in particular one can develop a calculus of functions $f : \mathbb{Q}_p \to \mathbb{Q}_p$. One of the prevalent ideologies of modern number theory is that if one wants to study \mathbb{Q}, one should first study \mathbb{R} and all the fields \mathbb{Q}_p ($p = 2, 3, 5, \ldots$) in parallel.

This project gives two constructions of \mathbb{Q}_p and then proves that they give the same object.

1 Inverse limit construction

1.1

An inverse system of rings (groups, vector spaces, ...) is a collection of rings R_n for $n = 1, 2, 3, \ldots$ together with ring homomorphisms $\phi_n : R_n \to R_{n-1}$. The inverse limit of such a system is by definition

$$R = \{(a_n)_{n \in \mathbb{Z}^+} | \phi_n(a_n) = a_{n-1} \text{ for all } n\} \subset \prod_n R_n.$$

In other words, it is the set of all compatible systems of elements $a_n \in R_n$, where “compatible” is determined by the ϕ_n.

We make R into a ring in the natural way: $(a_n) + (b_n) = (a_n + b_n)$ and $(a_n)(b_n) = (a_nb_n)$. Prove that this does indeed make R into a ring. There are natural homomorphisms $\psi_n : R \to R_n$ for all n; if you know about “universal properties” you can show that R and the homomorphisms ψ_n satisfy a certain universal property which characterizes them uniquely.

Two somewhat trivial examples: fix a ring R_0 and set $R_n = R_0$ for all $n \geq 1$. If $\phi_n = 0$ for all n, the inverse limit is 0; if we set $\phi_n = id$ for all n, then the inverse limit is just R_0. See below for a more interesting example.

1.2

Now assume that R_n is finite for all n. Define a topology on R by declaring that the sets $\psi_n^{-1}(a_n)$ for every $n \in \mathbb{Z}^+$ and every $a_n \in R_n$ are a basis for the
topology. Check that this is a legitimate definition. The resulting topology on R is called the pro-
finitie topology.

Prove that R with its profinitie topology is compact and totally disconnected (i.e., the connected components are points).

1.3

Let p be a prime number and apply the above with $R_n = \mathbb{Z}/p^n\mathbb{Z}$ and $\phi_n : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$ the natural projection. The resulting ring R is denoted \mathbb{Z}_p and is called the ring of p-adic integers. Prove that \mathbb{Z}_p is an integral domain, in fact a principal ideal domain, and that every ideal in \mathbb{Z}_p is of the form $p^e\mathbb{Z}_p$.

Where does p being prime matter?

1.4

Define \mathbb{Q}_p by $\mathbb{Q}_p = \mathbb{Z}_p[1/p]$, or more formally, $\mathbb{Q}_p = \mathbb{Z}_p[x]/(xp - 1)$. Topologize \mathbb{Q}_p by requiring that the sets $a + p^e\mathbb{Z}_p$ ($a \in \mathbb{Q}_p$, $e \in \mathbb{Z}$) form a basis for the topology. Prove that \mathbb{Q}_p is a topological field and that \mathbb{Z}_p is its maximal compact subring.

2 Completion construction

2.1

Let X be a metric space, i.e., a set with a distance function $d(x,y)$. Recall that this means that $d(x,y) = 0 \iff x = y$, $d(x,y) = d(y,x)$ and $d(x,y) + d(y,z) \geq d(x,z)$. A Cauchy sequence in X is a sequence of points x_1, x_2, x_3, \ldots such that for every $\epsilon > 0$ there exists an integer N such that $d(x_m, x_n) < \epsilon$ for all $m,n > N$.

Two Cauchy sequences (x_n) and (y_n) are equivalent if for every $\epsilon > 0$ there exists an integer N such that $d(x_n, y_n) < \epsilon$ for all $n > N$. Note that this is indeed an equivalence relation.

The completion of X (with respect to d) is by definition the set of equivalence classes of Cauchy sequences in X. Prove that d induces a natural distance function on the completion and that the map which sends an element of X to the “constant” Cauchy sequence gives an isometric embedding of X into its completion.

2.2

Suppose that X is a field (ring, group,...) and the distance function comes from an absolute value on X (so $d(x,y) = |x - y|$ where $| \cdot |$ satisfies $|x| = 0 \iff x = 0$, $|x + y| \leq |x| + |y|$, and $|xy| = |x||y|$). Show that the completion is a field too and the map from X to its completion is a field homomorphism.
2.3
The completion of \(\mathbb{Q} \) with respect to the usual absolute value is the real numbers. But there are other interesting possibilities for \(| \cdot |\). Define the \(p \)-adic absolute value on \(\mathbb{Q} \) by
\[
\left| \frac{a}{b} \right| = p^{v_p(b) - v_p(a)}
\]
where for an integer \(n \), \(v_p(n) \) is the power to which \(p \) divides \(n \). In other words, \(n = p^{v_p(n)} n' \) where \(n' \in \mathbb{Z} \) and \(p \) does not divide \(n' \).

Prove that the \(p \)-adic absolute value is indeed an absolute value. In fact, it satisfies a strong form of the triangle inequality, namely \(|x + y| \leq \max(|x|, |y|)\), with equality if \(|x| \neq |y| \). This is called the non-archimedean triangle inequality.

The non-archimedean triangle inequality has some strange consequences. For example, any point in a ball can serve as the center and every triangle is isosceles.

It is a theorem that up to a natural notion of equivalence the only absolute values on \(\mathbb{Q} \) are the usual one and the \(p \)-adic ones.

2.4
Applying the general machinery of completions to \(X = \mathbb{Q} \) with its \(p \)-adic distance, we get a field \(\mathbb{Q}_p \) together with an absolute value satisfying the non-archimedean triangle inequality. Prove that \(\mathbb{Q}_p \) is totally disconnected.

\(\mathbb{Q}_p \) is a fun place to do calculus. For example, you can check that a series converges in \(\mathbb{Q}_p \) if and only if its terms tend to 0!

Define \(\mathbb{Z}_p \) to be the closure of \(\mathbb{Z} \) in \(\mathbb{Q}_p \) with respect to the metric topology. Prove that \(\mathbb{Z}_p \) is the maximal compact subring of \(\mathbb{Q}_p \) and that \(\mathbb{Z}_p = \{ x \in \mathbb{Q}_p | |x| \leq 1 \} \).

3 Comparing the constructions

3.1
Prove that there is a (unique) field isomorphism between the two versions of \(\mathbb{Q}_p \) such that the profinite topology on the inverse limit construction corresponds to the metric topology on the completion construction. Also, the two definitions of \(\mathbb{Z}_p \) agree.

Either construction can be used to show that \(\mathbb{Q}_p \) is a locally compact topological field. It’s a theorem that the only locally compact topological fields are finite extensions of \(\mathbb{R} \) (i.e., \(\mathbb{R} \) and \(\mathbb{C} \)) and finite extensions of \(\mathbb{Q}_p \). (Extensions of \(\mathbb{Q}_p \) come in all degrees though.)

3.2
Just as one rarely thinks of real numbers as equivalence classes of Cauchy sequences, one rarely thinks of \(p \)-adic numbers that way or in terms of inverse
limits. Here is a convenient way to think of them:

Prove that every \(p \)-adic number can be written uniquely as a series of the form \(\sum_{n} a_n p^n \) where \(a_n \in \{0, 1, \ldots, p - 1\} \) for all \(n \in \mathbb{Z} \) and \(a_n = 0 \) for \(n \ll 0 \).

(Note that every real number can be written in a similar way, but where \(a_n = 0 \) for all \(n \gg 0 \). Also for reals, there is no need for \(p \) to be prime ... \(p = 10 \) is the standard choice for humans!)

3.3

There are also useful “Cantor set type” ways to think about the \(p \)-adics. Ask Fred Leitner about the Sierpinski triangle and \(\mathbb{Z}_3 \).