Integration Workshop 2005
Project on the Stone-Weierstrass Theorem

Feryâl Alayont

The goal of this project is to prove the Stone-Weierstrass Theorem. In 1885 Weierstrass proved that on a closed interval every polynomial can be uniformly approximated arbitrarily closely by polynomials. This result was generalized in 1937 by Stone.

Suppose that we have a collection of continuous functions on a compact Hausdorff space which is closed under addition, multiplication and scalar multiplication. Also suppose that for any two distinct points in the space, there is a continuous function in the collection which takes distinct values at these points. Then the theorem says that this collection approximates any continuous function arbitrarily closely.

Let X be a compact Hausdorff topological space. Let $C(X, \mathbb{R})$ (respectively, $C(X, \mathbb{C})$) denote the set of all continuous real-valued (respectively, complex-valued) functions on X. We provide $C(X, \mathbb{R})$ and $C(X, \mathbb{C})$ with sup-norm metric. That is, for $f, g \in C(X, \mathbb{R})$ or $C(X, \mathbb{C})$, $d(f, g) = \|f - g\|_u = \sup_{x \in X} |f(x) - g(x)|$.

Let \mathcal{A} be a subset of $C(X, \mathbb{R})$ (respectively, $C(X, \mathbb{C})$). \mathcal{A} separates points if for every $x, y \in X$, $x \neq y$, there exists $f \in \mathcal{A}$ such that $f(x) \neq f(y)$. \mathcal{A} is an subalgebra if \mathcal{A} is a real (respectively, complex) vector subspace of $C(X, \mathbb{R})$ (respectively, $C(X, \mathbb{C})$) and $fg \in \mathcal{A}$ whenever $f, g \in \mathcal{A}$. $\mathcal{A} \subset C(X, \mathbb{R})$ is called a lattice if max(f, g) and min(f, g) are in $C(X, \mathbb{R})$ whenever f and g are.

Exercise: Show that $C(X, \mathbb{R})$ (and therefore $C(X, \mathbb{C})$) separates points.

Hint: Use the fact that a compact Hausdorff space is normal, hence Urysohn lemma holds.

Example: Let $X = \{x_1, ..., x_n\}$ with the discrete topology. Consider $h : C(X, \mathbb{R}) \to \mathbb{R}^n$ defined by $h(f) = (f(x_1), ..., f(x_n))$. Show that h is an algebra isomorphism if the multiplication in \mathbb{R}^n is defined coordinate-wise.

The Stone-Weierstrass Theorem. Let X be a compact Hausdorff topological space. If \mathcal{A} is a closed subalgebra of $C(X, \mathbb{R})$ which separates points, then either $\mathcal{A} = C(X, \mathbb{R})$ or $\mathcal{A} = \{f \in C(X, \mathbb{R}) : f(x_0) = 0\}$ for some $x_0 \in X$. The first alternative is the case exactly when \mathcal{A} contains all the constant functions in $C(X, \mathbb{R})$.

We first prove several lemmas. The first lemma is the special case of the theorem for $X = \{x_1, x_2\}$.

Lemma. The only subalgebras of \mathbb{R}^2 are \mathbb{R}^2, $\{(0,0)\}$, $\{(r,0) : r \in \mathbb{R}\}$, $\{(0,r) : r \in \mathbb{R}\}$, $\{(r,r) : r \in \mathbb{R}\}$.

Hint: If a subalgebra \mathcal{A} of \mathbb{R}^2 which contains $(a,b) \in \mathbb{R}^2$ with $a \neq b$, $a \neq 0$ and $b \neq 0$, then (a^2, b^2) is also in \mathcal{A}. Conclude that $\mathcal{A} = \mathbb{R}^2$ in this case. Determine what happens in the cases where there is no such element in \mathcal{A}.

We have to do a little calculus in preparation for the next lemma.

Lemma. The Taylor’s series of $f(t) = (1 - t)^{1/2}$ at 0 converges absolutely and uniformly to $f(t)$ on $[-1, 1]$.

Proof: Step 1: Show that the Taylor’s series of $f(t)$ converges absolutely and uniformly on $[-1, 1]$. Hint: Use the Stirling’s formula:

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n^{n+1/2}} e^{-n}} = 1.$$
Step 2: Let \(g(t) \) be the limit of the Taylor’s series for \(t \in [-1, 1] \). Show that \(2(1-t)g'(t) = -g(t) \) for \(t \in (-1, 1) \). Solve this differential equation to conclude that \(g(t) = f(t) \) for \(t \in (-1, 1) \).

Step 3: Note that both \(f \) and \(g \) are continuous to finish the proofs.

One of the consequences of Stone-Weierstrass Theorem will be that the polynomials are dense in \(C([-1, 1], \mathbb{R}) \) in the uniform norm. In the next lemma we prove that on \([-1, 1], |x| \) is a limit of a sequence of polynomials which vanish at 0.

Lemma. For any \(\epsilon > 0 \) there exists a polynomial with real coefficients such that \(P(0) = 0 \) and \(|x| - P(x)| < \epsilon \) for all \(x \in \mathbb{R} \).

Proof: Step 1: Use the previous lemma to choose a polynomial \(Q(x) \) such that \(|(1-t)^{1/2} - Q(t)| < \epsilon/2 \) for \(t \in [-1, 1] \).

Step 2: Let \(t = 1 - x^2 \) and \(R(x) = Q(1 - x^2) \) to get a polynomial \(R(x) \) satisfying \(|x - R(x)| < \epsilon/2 \) for \(x \in [-1, 1] \).

Step 3: Finally, use \(R(x) \) to construct a polynomial \(P(x) \) such that \(|x - P(x)| < \epsilon \) for \(x \in [-1, 1] \) and \(P(0) = 0 \).

Now we prove that every closed subalgebra is a lattice:

Lemma. If \(\mathcal{A} \) is a closed subalgebra of \(C(X, \mathbb{R}) \), then \(|f| \in C(X, \mathbb{R}) \) for every \(f \in C(X, \mathbb{R}) \), and \(\mathcal{A} \) is a lattice.

Proof: Step 1: Let \(\epsilon > 0 \). For \(0 \neq f \in C(X, \mathbb{R}) \) let \(h = f/\|f\|_u \), and use the previous lemma to obtain \(\|h - P \circ h\|_u < \epsilon \).

Step 2: Observe that \(P \circ h \in \mathcal{A} \).

Step 3: Since \(\mathcal{A} \) is closed and \(\epsilon > 0 \) is arbitrary, conclude that \(|f| \in \mathcal{A} \). This finishes the proof of the first claim.

Step 4: Discover a way of expressing \(\max(f, g) \) and \(\min(f, g) \) in terms of \(f \) and \(g \) using the algebra operations and \(| \cdot |\). Use this to show that \(\mathcal{A} \) is a lattice.

The last lemma says that if a closed lattice is sufficiently large, then it is quite large.

Lemma. Let \(\mathcal{A} \) be a closed lattice of \(C(X, \mathbb{R}) \). If \(f \in C(X, \mathbb{R}) \)and for every \(x, y \in X \) there exists \(g_{xy} \in \mathcal{A} \) such that \(g_{xy}(x) = f(x) \) and \(g_{xy}(y) = f(y) \), then \(f \in \mathcal{A} \).

Proof: Step 1: Let \(\epsilon > 0 \). For each pair \(x, y \in X \) let \(U_{xy} = \{z \in X : f(z) < g_{xy}(z) + \epsilon\} \) and \(V_{xy} = \{z \in X : f(z) > g_{xy}(z) - \epsilon\} \). Show that these sets open and contain \(x \) and \(y \).

Step 2: Fix \(y \). As \(x \) ranges over \(X \), the sets \(U_{xy} \) cover \(X \). Use compactness to find a finite subcover corresponding to a finite set of points, say, \(x_1, \ldots, x_n \in X \). Let \(g_y = \max(g_{x_1y}, g_{x_2y}, \ldots, g_{xn y}) \). Then \(f < g_y + \epsilon \) on \(X \) and \(f > g_y - \epsilon \) on the open set \(V_y = \bigcap_{1 \leq i \leq n} V_{x_i y} \) which contains \(y \).

Step 3: Now as \(y \) ranges over \(X \), the sets \(V_y \) form an open cover of \(X \). Get a finite subcover corresponding to the points, say, \(y_1, y_2, \ldots, y_m \in X \) and let \(g = \min(g_{y_1}, g_{y_2}, \ldots, g_{y_m}) \). Then \(\|f - g\|_u < \epsilon \).

Step 4: Use the fact that \(\mathcal{A} \) is a closed lattice to finish the proof.

We are now ready to prove the Stone-Weierstrass Theorem.
Proof of The Stone-Weierstrass Theorem: Step 1: For any pair of distinct points \(x, y \in X \), let \(A_{xy} = \{(f(x), f(y)) : f \in A\} \subset \mathbb{R}^2 \). Observe that \(A_{xy} \) is a subalgebra of \(\mathbb{R}^2 \).

Step 2: Use The last two lemmas to conclude that \(A = C(X, \mathbb{R}) \) if \(A_{xy} = \mathbb{R}^2 \) for all \(x, y \).

Step 3: If not, then there exist \(x, y \) such that \(A_{xy} \) is a proper subalgebra of \(\mathbb{R}^2 \). Use the first lemma to decide which subalgebra it can be. Conclude that there exists \(x_0 \in X \) such that \(f(x_0) = 0 \) for all \(f \in A \).

Step 4: Show that \(x_0 \) is unique since \(A \) separates points.

Step 5: Use The last two lemmas again to conclude that \(A = \{ f \in C(X, \mathbb{R}) : f(x_0) = 0 \} \).

Step 6: Finally observe that this can not be the case if \(A \) contains the constant functions. □

Corollary. Let \(X \) be a compact subset of \(\mathbb{R}^n \). Then the set of all polynomials is dense in \(C(X, \mathbb{R}) \).

Remark: We want to prove a complex version of Stone-Weierstrass Theorem. But this would not be true without a further assumption: Consider the unit circle \(X = \{ z \in \mathbb{C} : |z| = 1 \} \) in the complex plane \(\mathbb{C} \). Then the polynomials in \(z \) with complex coefficients will separate points in \(X \), but they will not be dense in \(C(X, \mathbb{C}) \). For instance, \(f(z) = \bar{z} \) is not a limit of polynomials.

Exercise: Show that for \(0 < \epsilon < 1 \) there is no polynomial \(P(z) \) such that \(|\bar{z} - P(z)| < \epsilon \) for all \(|z| = 1 \).

Hint: Show that \(\int_X zP(z)dz = 0 \). Then compute \(\int_X |z|^2dz \) using \(|z|^2 = z(\bar{z} - P(z)) + zP(z) \) to obtain a contradiction.

The Complex Stone-Weierstrass Theorem. Let \(X \) be a compact Hausdorff topological space. If \(A \) is a closed subalgebra of \(C(X, \mathbb{C}) \) which separates points and is closed under complex conjugation, then either \(A = C(X, \mathbb{C}) \) or \(A = \{ f \in C(X, \mathbb{C}) : f(x_0) = 0 \} \) for some \(x_0 \in X \). The first alternative is the case exactly when \(A \) contains all the constant functions in \(C(X, \mathbb{C}) \).

Hint: Apply the Stone-Weierstrass Theorem to the subalgebra \(A_{\mathbb{R}} \) of \(C(X, \mathbb{R}) \) consisting of all \((f + \bar{f})/2 \) and \((f - \bar{f})/(2i) \) for \(f \in A \).